
Detecting IMAP Credential Stuffing Bots Using

Behavioural Biometrics

by

Ashley Barkworth and Rehnuma Tabassum

A MACSEC CAPSTONE PROJECT SUBMITTED IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Applied Cybersecurity

in the Faculty of Computer Science &
Canadian Institute for Cybersecurity

Supervisor: Arash Habibi Lashkari, PhD

THE UNIVERSITY OF NEW BRUNSWICK

August 2021

© Ashley Barkworth and Rehnuma Tabassum, 2021

Abstract

While credential stuffing has been around for some time, it has seen a great uptick

in use and is now one of the most common types of cyberattacks. Legacy email

protocols like the Internet Mail Access Protocol (IMAP) are particularly vulnerable

to this kind of attack as they do not support multi-factor authentication (MFA). We

propose a supervised learning system that detects credential stuffing bots using two

kinds of behavioural biometrics: mouse and keystroke dynamics. The system records

a user’s mouse and keystroke events while they complete three tasks in a graphical

user interface (GUI) application. To test our system, we developed two types of bots:

a simple bot which makes no attempt to appear human, and an advanced bot that

uses techniques to simulate human-like mouse and keyboard motions. We evaluated

our system using the Random Forest (RF), Decision Tree (DT), Support Vector

Machine (SVM), and K-Nearest Neighbors (KNN) algorithms and compared them

against two data sets: Simple containing human and simple bot data, and Advac-

ned containing human and advanced bot data. The highest accuracy against the

Simple and Advanced data sets were both 96.95% but achieved by the KNN and

RF classifiers, respectively. The RF classifier showed the best overall performance,

achieving the highest precision and mean AUC against the Simple data set and the

highest scores across all metrics against the Advanced data set. Our results show

that bot detection using mouse and keystroke dynamics is an effective solution as

part of a layered defence against credential stuffing bots.

ii

Acknowledgements

We would like to thank Dr. Arash Habibi Lashkari for his immense support, patience

and guidance throughout our master’s journey. His immense knowledge and ample

experience have encouraged us in all the time of our research. We would also like to

thank all the faculty members who shaped us to be where we are today.

Lastly, we would like to show our gratitude to Bell Canada for providing us

with the opportunity to carry out the research through the Bell Research Intensive

Cyber Knowledge Studies Program(BRICKS).

iii

Table of Contents

Abstract ii

Acknowledgments iii

Table of Contents iv

List of Tables vi

List of Figures vii

1 Introduction 1

1.1 Background . 1

1.2 Problem Statement . 2

1.3 Current Solutions and Limitations . 3

1.4 Our Contribution . 4

1.5 Thesis Organization . 5

2 Literature Review 6

2.1 Mouse Dynamics . 6

2.2 Keystroke Dynamics . 9

2.3 Bot Detection Techniques . 12

3 Design, Implementation, and Testing 16

iv

3.1 System Design . 16

3.1.1 Data Collection Phase . 17

3.1.2 Feature Extraction Phase . 19

3.1.3 Feature Calculation Phase . 22

3.1.4 Classification Phase . 23

3.1.4.1 Decision Tree Classifier 24

3.1.4.2 Random Forest Classifier 24

3.1.4.3 Support Vector Machine Classifier 25

3.1.4.4 K-Nearest Neighbors Classifier 25

3.2 System Implementation . 26

3.2.1 GUI Application . 26

3.2.2 Mouse/Keyboard Activity Logging 28

3.2.3 Automated Bot Scripts . 30

3.2.4 Event Processing . 31

3.2.4.1 Keystroke features 32

3.2.4.2 Mouse features . 33

3.2.5 Classifiers . 36

3.3 Testing . 36

3.3.1 Data Sets . 36

3.3.2 Evaluation Metrics . 37

3.3.3 Results and Analysis . 38

4 Conclusion and Future Work 41

References 43

v

List of Tables

2.1 Overview of related works on mouse dynamics 9

2.2 Overview of related works on keystroke dynamics 11

2.3 Overview of existing ML bot detection solutions 15

3.1 Features extracted from keystrokes 20

3.2 Features extracted from a single mouse action 23

3.3 Performance metrics across four models for Simple data set 38

3.4 Performance metrics across four models for Advanced data set . . . 38

vi

List of Figures

3.1 Overview of our proposed system . 17

3.2 Typing activity page . 20

3.3 Ball activity page . 21

3.4 Sorting activity page . 22

3.5 Advantages of the classifiers used . 27

3.6 Callback functions for the key and mouse listeners 29

3.7 Example key CSV file . 30

3.8 Example mouse CSV file . 30

3.9 Implementation of Bézier curves . 32

3.10 Keystroke features calculation . 34

3.11 Parsing mouse events into actions . 35

3.12 ROC Curves for Simple data set . 39

3.13 ROC Curves for Advanced data set 40

vii

List of Symbols, Nomenclature or

Abbreviations

IMAP Internet Mail Access Protocol
MFA Multi-factor authentication
GUI Graphical user interface
CSV Comma separated values
ML Machine learning
MM Mouse move
PC Point and click
DD Drag and drop
CAPTCHA Completely Automated Public Turing test to tell Computers and Humans Apart
ANN Artificial neural network
SVM Support vector machine
KNN K-Nearest Neighbors
LVQ Learning vector quantization
CNN Convolutional neural network
LSTM Long short-term model
RNN Recurrent neural network
MLP Multi-layer perceptron
GBT gradient boosted trees
XGBT extreme gradient boosted trees
RBF Radial basis function
LPC Linear predictive coding
EER Equal error rate
FAR False alarm rate
FRR False rejection rate
AUC Area under the ROC curve
TP True positives
FP False positives
TN True negatives
FN False negatives

viii

Chapter 1

Introduction

1.1 Background

Credential stuffing is a type of attack that obtains stolen account credentials and at-

tempts to ”stuff” these credentials into a large number of other account logins, with

the aim of successfully logging into and compromising users’ accounts. Once an ac-

count is successfully compromised, attackers can carry out different illegal activities

such as e-commerce fraud, selling access to compromised accounts, corporate/institu-

tional espionage, and theft. To carry out credential stuffing attacks, cybercriminals

use botnets that automate the process of trying several credentials on multiple sites

at once. The stolen credentials are sourced from prior data breaches and often ac-

quired through phishing campaigns. Unlike brute-force attacks, where passwords are

guessed, credential stuffing makes the educated gamble that users are often so over-

whelmed with the number of logins they have (50-200 on average) that they resort

to reusing passwords across multiple accounts to lower the burden of memorization

[1, 2, 3]. This is an educated gamble: according to a study commissioned by Telesign,

73% of online accounts use duplicated passwords, and 54% of consumers use five or

fewer passwords across their entire life, while 22% of users use just three passwords

1

or fewer [4]. Credential stuffing is now the most prevalent form of account takeover

and is remarkably commonplace; there were 193 billion credential stuffing attempts

globally during 2020, according to Akamai’s ‘2021 State of the Internet’ report [5, 6].

Credential stuffing has become a great matter of concern for the Internet

Mail Access Protocol (IMAP). IMAP is a popular method for accessing electronic

mail and news messages maintained on a remote server. This protocol is specially

designed for users who need to view email messages from different computers since

all management tasks are executed remotely without transferring the messages back

and forth between these computers and the server. A client program can manipulate

remote message folders (mailboxes) in a way that is functionally equivalent to local

folders. A major vulnerability in IMAP, along with other legacy email protocols,

is that it cannot support MFA and depends on only a username and password for

authentication, leaving it susceptible to credential stuffing.

1.2 Problem Statement

Security companies have noticed a surge in the number of credential stuffing attacks

targeting email servers like G Suite and Office 365 [7]. A report by Proofpoint

revealed that approximately 60% of all Microsoft Office 365 and G Suite tenants

had been targeted using IMAP-based password-spraying attacks and, as a direct

result, approximately 25% of G Suite and Office 365 tenants that were attacked also

experienced a successful breach [8]. Attackers exploit the lack of MFA support in

IMAP, as well as the fact that IMAP is on by default in these servers, to bypass the

multifactor controls on these systems and compromise users’ email accounts.

2

1.3 Current Solutions and Limitations

Rate limiting has traditionally been employed to stop checking multiple accounts

from a single IP address [9]. In unsophisticated attacks, login attempts come from

a small set of IP addresses from unexpected regions. These IP addresses can be

blacklisted using firewalls or other defences, so rate limiting is effective. However,

sophisticated attacks use thousands of IP addresses or proxies to circumvent rate

limiting [10]. For example, attackers will frequently use residential IP addresses,

which are less susceptible to rate limiting and blacklists for fear of denying service to

residential users [11]. Further, a previous study of 182 of the Alexa Top 500 websites

found that 131 out of the 182 websites did not properly implement rate-limiting

mechanisms; the sites allowed unlimited login attempts if the attacker adjusted the

time interval between consecutive login attempts or repeatedly changed IP addresses

[12].

Requiring an additional factor for authentication (e.g., two-factor authenti-

cation (2FA), MFA) is another common approach but is unsupported by IMAP.

Moreover, users are generally reluctant to adopt 2FA and MFA. Lastly, MFA is not

foolproof. For example, along with legacy email protocols, another MFA bypass tech-

nique is the installation of malicious Azure/O365 OAuth apps. Attacks in June 2020

on the Australian government and businesses leveraged OAuth, a standard technique

used for access delegation in apps, to gain unauthorized access to cloud accounts such

as Office 365. The attackers developed a malicious Office 365 application and sent

it to target users as part of a spear phishing link. On receipt, the malicious app

convinced the victim to grant permission to access data in the user’s account, most

notably: offline access, user profile information, and the ability to read, move and

delete emails [10, 13].

Another defense against credential stuffing involves detecting password reuse

across accounts and sending password reuse notifications. However, users are re-

3

luctant to stop password reuse even after repeated warnings to do so [3]. Users are

similarly resistant to adopting password managers; a 2019 Google/Harris Poll survey

of 3000 U.S. adults found that only 24% of respondents reported using a password

manager [6].

1.4 Our Contribution

With the insight that credential stuffing attacks are carried out by bots, a promising

countermeasure is to identify and block these bots before they can login. Biometrics

can be used to establish a user’s identity online based on their physical or behavioural

traits. Physical biometrics uses innate human characteristics such as fingerprint,

iris, retina, facial, and voice patterns and has been studied previously for intrusion

detection systems, but it is relatively intrusive and may require installing additional

devices such as scanners. Behavioural biometrics, which refers to the measure of

uniquely identifying and measurable patterns in human activities, is not as intrusive

and has attracted increasing attention in the security community [14]. Two types

of behavioural biometrics to characterize a user’s interaction with the computer are

keystroke and mouse dynamics. While past research has explored using keystrokes

and mouse dynamics for user authentication, applying them for bot detection is a

relatively unexplored area [15].

The objective of our research is to prove that mouse and keystrokes dynamics

can discriminate between humans and bots. We do this by developing a system which

collects mouse and keystroke data from users while they complete three separate

activities in a graphical user interface (GUI). This data is parsed to extract a total

of 131 keystroke and mouse features. These which are subsequently used as input for

supervised machine learning (ML) algorithms that classify each user’s feature vector

as either human or bot. Our system can be integrated into the login process of email

4

clients to stop credential stuffing bots before they compromise accounts.

1.5 Thesis Organization

The rest of our paper is organized as follows: Chapter 2 summarizes related work

on mouse and keystroke dynamics. In addition, it surveys different bot detection

techniques, including ML, which is one of the widely used solutions. Moreover, we

summarize the mouse and keystroke dynamics at the end of the respective sections.

Chapter 3 describes the general overview of our system, followed by a de-

scription of each of its components, which are the data collection, feature extraction,

feature calculation, and classification phases. In the explanation of the system’s clas-

sification component, our four chosen classification algorithms are described along

with their advantages to clarify the purpose of choosing those particular algorithms

for our system. Finally, the implementation and testing of our bot detector solution,

along with the testing results and analysis, are described in detail. Chapter 4 gives

our conclusions and suggests future work.

5

Chapter 2

Literature Review

2.1 Mouse Dynamics

Mouse dynamics are the patterns and characteristics obtained from a user’s inter-

actions with their computer mouse through their movements, scrolls, and clicks.

Early works utilized mouse dynamics for user authentication [16, 17, 18, 19, 20, 21].

Researchers have recently harnessed mouse dynamics for other applications such as

stress detection [22, 23], attention detection [24], and bot detection [25].

Data for research on mouse dynamics come in two forms. The first form is

specific mouse usage data collected in a specific application such as web browsers

or applications that require users to perform certain tasks [26]. Gamboa et al. [16]

recorded mouse data from their interactions with a memory game. Sayed et al. [20]

gathered mouse data from users while they recreated gestures in a drawing appli-

cation. Antal et al. [15] performed data collection in a JavaScript web application

asking users to perform different actions, each associated with geometric shapes. Mo-

hamed and Saxena [21] developed a dynamic cognitive game where users drag and

drop objects into target locations. The second form of data is general mouse usage

data transparently recorded from users conducting their daily online activities rather

6

than specific tasks [14]. Shen et al. [18] developed a data collection software program

that runs as a background task and records users during their routine computing ac-

tivities such as Internet surfing, word processing, online chatting, programming, and

online gaming. Similarly, Ahmed et al. [17] implemented data collection software

to record mouse activity on users’ machines while conducting their usual activities

without any restriction.

Mouse activity is recorded as a sequence of events such as mouse moves or

drags, mouse button presses, mouse button releases, and wheel scrolls. These event

sequences are referred to as raw data. In most papers, each event is recorded with

three fields: the x and y coordinates of the mouse pointer and the elapsed time since

the start time of the recording session. Both [14] and [15] recorded two additional

fields describing the current condition of the button and the current state of the

mouse. Gamboa and Fred [16] recorded an additional field containing the event type

(e.g. mouse move, mouse click).

There are two approaches to processing raw data. The first approach forms

logical, semantically meaningful actions from groups of events. In Gamboa and Fred

[16], consecutive movements between clicks are grouped together and defined as

strokes. Ahmed and Traore [17] aggregated events into four types of actions: mouse

move (MM), defined as general mouse movement; point and click (PC), defined as

mouse movement followed by a click or double click; and drag and drop (DD), which

starts with the mouse button down, followed by movement, and ends with the mouse

button up; and silence, defined by no mouse movement. The papers [14] and [26] used

the MM, PC, and DD actions as defined in [17]. Shen et al. [18] used the PC, MM,

DD, and silence actions and added single-click and double-click actions, which are

defined as single and double mouse clicks without any prior movement, respectively.

The second approach to processing segments events into fixed-size blocks. Chong et

al. [27] grouped all events within a fixed time window, while Antal et al. [15] formed

7

blocks of 128 events.

After processing, features are extracted from each action or block. Features

used in previous works include: duration/elapsed time [16, 17, 19, 20, 21, 26, 14, 25],

distance [16, 17, 21, 14, 26, 15, 22, 27, 23, 25], velocity or speed [16, 17, 18, 19,

20, 21, 14, 26, 15, 27, 23, 25], acceleration [16, 18, 19, 20, 21, 14, 26, 23], jerk

[16, 20, 14, 26], angle [16, 20, 21, 14, 26, 25], curvature [16, 20, 14, 26], angular

velocity [16, 14, 26], straightness [16, 14, 26, 25], and click time [16, 18, 19]. In

addition to feature extraction from actions/blocks, features may be extracted over

an entire user session, such as the total duration and the total number of actions.

The next step after feature extraction is to feed them as input into a model.

This model may be a statistical model. Gamboa and Fred [16] used Parzen density

estimation and a unimodal distribution model. Kim et al. [22] used linear predictive

coding (LPC). However, the more common approach is to apply a ML model; pop-

ular choices include support vector machines (SVM), k-nearest neighbors (KNN),

long short-term models (LSTM), and Random Forest. The output of these models

depends on what it is being applied for. For intrusion detection systems, the output

may be an outlier or anomaly score, whereas user authentication and bot detection

systems may output a classification; this classification may be the user’s identity (for

authentication) or a binary classification of bot or human (for bot detection). Upon

obtaining this output, a system can make a decision on the user in question, e.g.,

whether to grant or deny them access to a service. Table 2.1 summarizes the related

works on mouse dynamics and their results, which are either the false acceptance

rate (FAR) and false rejection rate (FRR), the equal error rate (ERR), the area

under the receiver operating curve (ROC) curve (AUC), or the accuracy.

8

Table 2.1: Overview of related works on mouse dynamics

Paper Year Application No.
Features

Data Collection Model Results

[16] 2004 Authentication 63 Specific Statistical EER: 0.2%

[17] 2007 Authentication 39 General ANN EER: 2.46%

[18] 2012 Authentication 92 General SVM, ANN,
KNN

FAR: 0.37%
FRR: 1.12%

[19] 2013 Authentication 74 Specific SVM, ANN,
KNN

FAR: 8.74%
FRR: 7.69%

[20] 2013 Authentication 12 Specific LVQ neural
network

FAR: 5.26%
FRR: 4.59%

[21] 2016 Authentication 64 Specific Random Forest
FAR: 2%
FRR: 2%

[26] 2019 Authentication 39 Public data sets Random Forest AUC: 0.92− 0.99

[14] 2019 Authentication 39 Public data set Random Forest AUC: 0.92

[22] 2020 Stress
detection

31 Public data set LPC, CNN,
LSTM

Accuracy: 62.47%

[23] 2020 Stress
detection

22 Specific Random Forest Accuracy: 63%

[24] 2020 Attention
detection

2 Specific RNN, LSTM,
CNN

AUC: 0.739
F1: 0.731

[27] 2020 Authentication 2 Public data sets CNN, LSTM,
SVM

AUC: 0.93− 0.96
EER: 0.1− 0.13

[25] 2021 Bot detection 6 Specific Random
Forest, SVM,

KNN

Accuracy: 93%

2.2 Keystroke Dynamics

Keystroke dynamics is another behavioural trait in biometrics that targets recog-

nizing the patterns of rhythm and timing-based features created when a user types

something. These features can include the typing speed, the time between pressing

and releasing different keys, the pressure exerted when typing, and the hand pos-

tures during typing. Similar to mouse dynamics, earlier research works also used

keystroke dynamics for the authentication purposes. For example, a user’s keystroke

analysis can help identify intruders [28] or predict users’ educational levels [29]. Re-

cently, amidst the global pandemic, Morales et al. [30] proposed fighting fake news

propagation using keystroke biometrics for content de-anonymization. Bergadnano

et al. [31] discussed how keystroke dynamics analysis could be used for various pur-

poses such as strong authentication, identity confirmation, and user identification

and tracking over the internet with a FAR of 4% and Imposter Pass Rate(IPR) of

9

less than 0.1%. Similar work has been conducted on user authentication [31, 32],

where they extracted keystroke features to analyze, identify and authenticate the

user using learning algorithms such as SVM [32] and the error back propagation

algorithm in an ANN [33].

Keystroke dynamics can be divided into two primary types: free-text and

fixed-text. Fixed-text utilizes the user’s typing patterns by entering a preset text

such as a username or password, whereas free-text uses the user’s typing patterns by

entering a predefined text such as writing an email or transcribing a sentence with

typing errors. Lu et al. [34] proposed a model leveraging CNNs and RNNs to learn

the keystroke data obtained from free text to carry out continuous authentication.

Their model produced a FRR of 1.89%, FAR of 2.83%, and EER of 2.36%. On the

other hand, Krishnamoorthy et al. [32] leveraged fixed text to classify the behaviour

of users accessing computer devices in order to authenticate them. They chose the

fixed word ‘.tie5Roanl’ and recorded the typing patterns of 94 users to carry out

their research. Solano et al. presented research on behavioural biometrics as well,

which is used to develop a Risk-based authentication model for login authentication

in web applications. They used both mouse and keystroke dynamics for static au-

thentication using the Random Forest classifier to discriminate legitimate users from

attackers. Their model achieved an FRR of 10.73% and a FAR of 23.34%.

For the research, data acquisition is done using either a specific application

developed solely for data collection, such as an online application [32, 35], a webpage

including a text-based CAPTCHA image with a text box [36]; or collected from daily

online activities, such as using webpage-embedded logger in the header of a webpage

[37]. The keystroke data consists of a sequence of time-based events where each

event contains the timestamp, such as key pressed and key released events. Later,

several features are extracted from those sequences of events. Mostly four features

are calculated from each sequence: hold latency, inter-key latency, press latency, and

10

release latency [36, 37, 25].

After data collection, the extracted features are fed into the model developed.

As discussed earlier in mouse dynamics, these models can either be a statistical model

or a ML model. The ML model can be supervised and unsupervised, including

different categories such as regression, classification and anomaly detection. The

evaluation of these models depends on the metrics used, such as FAR, FRR, ERR,

IPR etc. Table 2.2 shows the summary of the related works done on keystroke

dynamics, models used, the results of the works and the limitations of each paper.

Table 2.2: Overview of related works on keystroke dynamics

Paper Year Application No. Features Model Results Limitations

[30] 2020 Reduce
Propagation of

Fake news

4 temporal RNN Accuracy: 95 % No bot detection

[29] 2018 Educational
level of users

2 temporal
features, 163

calculated
features

Radial Basis
Neural

Network

Accuracy: 85 % Longer time to
build model

[28] 2017 Dataset to
detect

intruders

- - - No detailed
analysis

[31] 2012 Authentication 6 Statistical
analysis

FAR: 4%
IPR: 0.01%

Cannot be used for
password based
authentication

[32] 2018 Authentication 9 Categorical
Features

SVM
Accuracy: 97.40%
F1 Score: 97.01%

Only one
classification

algorithm used

[33] 2018 Authentication 7 ANN, Error
backpropaga-

tion

Accuracy: 69% Less accuracy

[34] 2020 Authentication 4 feature
sequence

CNN, RNN
FRR: 6.61%
FAR: 5.31%
EER: 5.97%

Small amount of
data

[37] 2017 Bot detection 2 C4.5 Accuracy: 99% Prone to bot
attack

[35] 2020 Software bot
detection

4 Logistic
regression

Accuracy:
93.33%

Limited number of
users, simple fixed

text

[36] 2019 Bot detection 3 Euclidean
Distance
proposed

- Prone to
automated attacks

[38] 2020 Authentication 4 Random
Forest

FAR: 23.34%
FRR: 10.73%

Data collected
from experienced

users with
keyboards.

Unaccounted
novice users

11

2.3 Bot Detection Techniques

Bots are automated scripts or programs to carry out activities by software rather

than humans. They can be benign and useful, such as search engine crawlers that

provide easy access to content from the Internet. However, attackers wield bots to

carry out a variety of malicious actions, including credential stuffing. In recent years,

Botnet identification has become a prominent study issue. Botnet identification and

tracking have been proposed using a variety of techniques and methodologies.

CAPTCHAs, a widely used bot detection mechanism, are challenge-response

tests designed to be simple for humans but difficult for bots to solve. Researchers

have examined the effectiveness of CAPTCHAs and the attacks against them. Xu

et al. [39] provided a review on the development of CAPTCHA technology and dis-

cussed CAPTCHA mechanisms from a security and usability aspect. The authors

classified the most common existing types of CAPTCHAs as text-based, image-

based, and sound-based. They also studied the techniques that bots use to break

CAPTCHAs. These techniques included object segmentation, object recognition,

and dictionary attacks. The authors ultimately concluded that designing CAPTCHAs

that are both usable and secure has become increasingly difficult. Further, they found

that most existing CAPTCHAs are vulnerable to cracking due to advancements in

ML and deep learning that attackers exploit. Similarly, Guerar et al. [40] inves-

tigated the evolution of CAPTCHAs over the past two decades and summarized

the different techniques by bots used to break them. The authors found that bots

are continuously evolving to break these CAPTCHA schemes. Through advance-

ments in ML and computer vision (CV) bots are now able to solve image-based

CAPTCHAs using object and pattern recognition. Bots also build up dictionaries of

the correct solutions in order to defeat cognitive CAPTCHAs. Mohamed et al. [41]

implemented a dynamic cognitive game CAPTCHA that challenges the user to per-

form a game-like cognitive task while interacting with a series of dynamic images.

12

They dissected these CAPTCHAs against two types of fully automated attacks:

randomized attacks that attempt solving the them by random guessing, and attacks

that use object recognition methods to locate target objects and regions and build

up dictionaries of the correct solutions. Their results showed that dynamic cogni-

tive game CAPTCHAs are secure against randomized attacks but are vulnerable to

dictionary-based attacks.

Most existing bot detection solutions also use browser fingerprinting as part

of their bot detection logic. Browser (or device) fingerprinting gathers and analyzes

characteristics unique to a device, including: device information like the hardware

and operating system, browser information like browser history and active plugins,

and networking information like the origin IP and geolocation [42]. Amin Azad et

al. [43] investigated the design and implementation of 15 popular commercial anti-

bot services and evaluated their ability to stop attacks, include credential stuffing.

Through whitebox analysis of these services’ source code, the authors found that all

but one service, Cloudflare, used browser fingerprinting. Yet, according to Nathan

[44], tech-savvy cybercriminals have been able to leverage stolen user data (e.g.

account credentials, cookies, and browser user agents) obtained from keylogging

trojans as well as residential IP addresses for their bots to appear innocuous and

evade detection from browser fingerprinting methods.

The most popular bot detection techniques used employ honeynets, commu-

nication signature detection and detection of abnormal behaviour according to [45].

Honeynets are deployed to collect information from bots in a controlled environ-

ment to analyze different characteristics of the bot and the payload of their attack.

Additionally, this information is used to discover the command and control (C&C)

system, unknown susceptibilities, and other information. Although the honeynet

method has a very high accuracy for botnet detection, it cannot effectively detect

unknown bots and is useless in real-time systems. Communication signature detec-

13

tion is the second and most commonly used technique for botnet detection. The

most common methods include whitelisting or blacklisting IPs, regular expressions,

and n-gram models. In this technique, when a new bot is detected, the patterns are

matched with pre-defined patterns and signatures collected from well-known bots.

Nevertheless, this method is prone to obfuscation technology as most bots can avoid

signature-based detection. The third method is anomaly-based detection, based on

the basic idea of detecting the host behaviour or network traffic abnormalities using

ML, deep learning, or other statistical analysis.

Several prior works have proposed ML bot detection solutions, each with

different features and for different types of bots. Lagopoulos et al. [46] proposed

a supervised learning approach to detect web robots on academic publishing web-

sites, based on 13 features from hyper-text transfer protocol (HTTP) requests to

web servers such as the total number of requests and time between requests. They

applied four models: a SVM with a RBF kernel, a multi-layer perceptron (MLP),

gradient boosted trees (GBT), and extreme gradient boosted trees (XGBT). Shi

et al. [47] applied semi-supervised clustering to detect social bots based on a user’s

clickstreams, i.e., the order of clicks when visiting websites. Rather than using quan-

titative features that can be imitated by bots, they analyzed user behaviour features

and identified transition probability features between user clickstreams. The authors

compared their approach with a supervised SVM model to verify its efficiency. Tsik-

erdekis et al. [48] constructed a deep learning model to detect bots in video games

based on a combination of game and mouse movement based features. Acien et

al. [25] proposed BECAPTCHA, a CAPTCHA model for mobile phones that deter-

mines if users are humans or bots based on touchscreen swipe (i.e., drag and drop)

gestures. They evaluated their model using synthesized swipe gestures generated by

generative adversarial neural networks, and applied SVM, KNN, and Random For-

est models to classify six swipe gesture features - duration, distance, displacement,

14

Table 2.3: Overview of existing ML bot detection solutions

Paper Year Type of Bot
No. Features

(Type of Feature)
Model / Algorithm Results

[46] 2017 Web robots
on academic
publishing

sites

13
(HTTP requests)

SVM, MLP, GBT,
XGBT

91.81% F1 score
91.33% accuracy
91.23% G-mean

[47] 2019 Social media
bots

11
(quantitative statistics &
clickstream sequences)

Semi-supervised
clustering

93.1% precision
97.5% recall

[48] 2020 Video game
bots

4
(game actions &

mouse movements)
LSTM

98.81% precision
99.08% recall

98.94% F1 score

[25] 2021 Bots on
mobile phones

6
(touchscreen dynamics)

SVM, KNN, Random
Forest

93% accuracy

angle, mean velocity, move efficiency - as human or bot. Table 2.3 summarizes the

existing bot detection solutions using ML.

15

Chapter 3

Design, Implementation, and

Testing

3.1 System Design

In this chapter we propose a scalable bot detection technique using supervised ma-

chine learning to address credential stuffing attacks on IMAP, which are mostly

carried out by botnets. The proposed system can be used as a security layer in

organizations trying to prevent attacks carried out by bots. Most modern credential

stuffing software evades security by employing thousands of bots to attempt multiple

logins across multiple platforms using same username with different passwords from

various device kinds and IP address at the same time. Although, the browser type

or the IP address can be spoofed easily, the behavioral traits cannot be changed

without difficulty. The general approach of the proposed system is outlined below

in Figure 3.1. The system’s workflow can be divided into four phases:

1. Data Collection: While a user interacts with an application, their mouse and

keyboard activity is recorded as a sequence of events. Each user’s mouse and

keyboard events are saved to two distinct CSV files.

16

2. Feature Extraction: User mouse and keyboard event data is parsed separately

to extract various mouse and keystroke features. For each feature, a set of

values is extracted over the user’s entire mouse or keyboard session.

3. Feature Calculation: The average, standard deviation, maximum, and mini-

mum values are calculated for each extracted feature set. The calculated mouse

and keystroke feature values are combined together to form a single feature row

representing a single user.

4. Classification: The feature rows of each user are fed into classification algo-

rithms in order to build an ML model that classifies users as humans or bots.

Figure 3.1: Overview of our proposed system

3.1.1 Data Collection Phase

We developed a graphical user interface (GUI) application to record mouse and

keyboard events from users. Our application contains three activities: a typing

activity (Figure 3.2) for recording keyboard data, as well as a ball activity (Figure

3.3) and sorting activity (Figure 3.4) for recording mouse data.

17

To record keystrokes, we chose fixed-text keystrokes because of their practical

advantages. Service providers widely use fixed-text keystroke dynamics solutions to

validate a user’s identification while they input their login and password. These

solutions, in turn, aid in the prevention of credential theft, credential leakage, and

brute-force assaults. The typing activity page asks the user to type the word ‘123CA-

Pabc!’ 10 times. The word selected is a combination of uppercase letters, lowercase

letters, numbers, and special characters. Nowadays, most login platforms only accept

combination passwords as they are considered strong. As a result, most users choose

passwords like this. In order to make our data more realistic, we came up with the

idea of choosing this combination. The other aspect of the typing activity is typing

the word 10 times. This is because the fixed-text keystroke dynamics approach is

usually applied to a short text sequence, and the text is repeated for a fixed number

of times for every user in order to build an accurate model. While a user types, each

key press and release event are recorded. Each key event record contains the time

that the event occurred in seconds and the key that was pressed or released.

The first mouse activity is the ball activity, where users are instructed to click

on a ball 10 times. Upon being clicked, the ball reappears in a new, random location

on screen. After completing the ball activity, users are shown the sorting activity,

which requires them to drag images of four animals (cat, dog, beaver, and monkey)

and four fruits (apple, banana, strawberry, and orange) to the correct labelled box.

As a user completes both activities, their mouse activity is recorded as a sequence

of events. Each mouse event record contains the time that the event occurred in

seconds; the x and y coordinates of the mouse pointer; the condition of the mouse

button; and the state of the mouse or mouse button.

The GUI can be completed by humans to collect human biometrics data. In

order to collect bot biometrics data, we coded bot scripts to automatically complete

the GUI activities. To compare our bot detection system against attacks with differ-

18

ent levels of sophistication, we implemented two types of bots: a simple bot and an

advanced bot. The simple bot does not try to mimic humans in any way, whereas

the advanced bot uses techniques to simulate human-like movements/actions. There

are several key differences between the design of the two bots which are based on

prior research. First, the simple bot’s mouse movements are very fast; this is because

when programming a bot, the easiest way to move the mouse is by giving the des-

tination coordinates, which results in nearly instantaneous mouse movements where

the mouse jumps between the start and end locations [49]. In contrast, the advanced

bot moves more slowly and smoothly. Second, the simple bot moves the mouse in

straight lines with zero acceleration (i.e., constant speed except when changing di-

rections), which [37] and [49] found that many bots do. In contrast, the advanced

bot’s mouse trajectories are defined by Bézier curves. Bézier curves are parametric

curves defined by a set of points and are commonly used in computer graphics to

draw shapes, as well as in prior research to generate mouse trajectories[50]. When

Bézier curves are used to create mouse paths, it becomes much harder to differenti-

ate human mouse movements from bots, both visually and by using detection rules

[49]. Lastly, the simple bot has zero randomness or variance in its movements. For

example, the simple bot enters keys with even intervals and performs actions without

zero delay in between. In constrast, the advanced bot is programmed with random

time delays between entering keys; random delays after entering a word; random

speeds when moving or dragging the mouse; and random delays between pressing

and releasing the mouse button when clicking.

3.1.2 Feature Extraction Phase

After a user (human or bot) finishes interacting with the GUI and their keyboard and

mouse event data have been saved to CSV files, the events are processed to extract the

user’s keystroke and mouse feature values. Four temporal features are extracted from

19

Figure 3.2: Typing activity page

Table 3.1: Features extracted from keystrokes

Name Description

Hold time The elapsed time between a press and release of the same key

Inter-key latency The elapsed time between consecutive press and release or release
and press events

Press time The elapsed time between two consecutive press events

Release time The elapsed time between two consecutive release events

keystroke data: hold time, inter-key latency, press time, and release time. Table 3.1

presents an overview of the keystroke features with their descriptions. According to

[30], these four features are used for both free-text and fixed-text keystroke systems.

The respective key codes are also added with the extracted features.

To extract mouse features, the mouse events are first parsed and grouped to

form actions. Following [14] and [26], we group events into three types of actions:

mouse move (MM), point and click (PC), and drag and drop (DD). Each action is

defined by the action type and its set of events. Further, the entire set of a user’s

mouse actions are grouped together and defined as a session. For each action in

20

Figure 3.3: Ball activity page

a user’s session, ten features are extracted: tangential velocity, acceleration, jerk,

duration, straightness, number of events, curvature, the sum of angles, maximum

deviation, and click time. For the tangential velocity, acceleration, jerk, and cur-

vature, the value extracted is the average over the action’s set of events, e.g., the

average tangential velocity between consecutive events. The first nine features are

derived using the same definitions from [14], where each action can be represented

as a sequence of triplets (xi, yi, ti), i = 1 . . . n, where n is the number of events in the

action. Some preliminary computations are made before feature extraction. They

include the angle of the path tangent with the x-axis, calculated using Equation 3.1

and the path length of the mouse’s trajectory, calculated with Equation 3.2:

Θi = atan2
(yi − yi−1

xi − xi−1

)
, i = 2, . . . , n (3.1)

si =
i∑

k=1

√
(xk − xk−1)2 + (yk − yk−1)2 (3.2)

The click time is extracted for PC actions and is defined as the elapsed time

between the mouse button press and mouse button release events. An overview

21

Figure 3.4: Sorting activity page

of the action-based mouse features, including their definitions and descriptions, are

presented in Table 3.2.

3.1.3 Feature Calculation Phase

After computing the set of features values for each mouse and keystroke feature, the

average, standard deviation, maximum, and minimum values are calculated over each

set. For keystroke features, this includes the set of hold times, inter-key latencies,

press times, and release times. For mouse features, all actions in a user session are

first grouped by action type (MM, PC, DD), and the values are calculated over each

group of actions. There is one additional feature calculated for keystrokes: the total

time taken for typing. There are two additional features calculated for the mouse:

the total time taken to complete both mouse activities and the total number of mouse

actions. A total of 131 features are calculated from keystroke and mouse movements.

Finally, each user’s calculated keystroke and mouse features are combined together

to form the user’s feature row, which is fed as input into the classifiers to distinguish

between bots and humans.

22

Table 3.2: Features extracted from a single mouse action

Name Definition Description

Tangential velocity v =
√

v2
x + v2

y Rate of change in distance w.r.t. time

Acceleration a = dv
dt

Rate of change in velocity w.r.t. time

Jerk j = da
dt

= d2v
d2t

Rate of change in acceleration w.r.t. time

Duration tn − t1 Elapsed time between action’s start and end time

Straightness
|P1Pn|

sn
Ratio of the shortest distance between the first point (P1)

and last point (Pn) in the action and the entire length of the
mouse’s trajectory sn

Number of events n Total number of events in the action

Curvature dΘ
ds

Rate of angle change w.r.t. trajectory s

Sum of angles
∑n

i=1 Θi Total sum of angles made by the mouse with respect to the
x-axis

Maximum deviation maxi d(Pi, |P1Pn|) Largest distance between the points of the trajectory and the
segment between the two endpoints P1 and Pn

Click time
(PC actions)

tn − tn−1 Elapsed time between button press (the 2nd last event of PC
actions) and button release event (the last event of PC

actions)

3.1.4 Classification Phase

There are two types of machine learning (ML) algorithms: supervised and unsuper-

vised. In supervised machine learning, the training data contains output variables

(also known as target, dependent, or respondent variables) that correlate to the in-

put variables. The supervised learning algorithm examines the data and learns a

function that maps the connection between the input and output variables. Un-

supervised learning algorithms are used when the training data does not have an

output variable. Such algorithms try to find the intrinsic pattern and hidden struc-

tures in the data. Clustering and dimensionality reduction algorithms are examples

of unsupervised learning algorithms [51]. Supervised machine learning can be fur-

ther divided into regression, classification, forecasting, and anomaly detection. Bot

detection in our system is framed as a classification problem.

Classification refers to a class, and the goal of classification is to categorize a

set of data into classes; for example, when predicting an exam result that is either

‘Pass’ or ‘Fail’, or when working on an e-commerce project and it is required to

predict the product name for some use case [52]. Our bot detection system’s task

23

is similar, because it needs to identify whether a user is bot or human. They are

two types of classification: binary classification and multi-class classification. Binary

classification involves two classes (e.g., ‘Pass’ or ‘Fail’, 0 or 1). In contrast, multi-

class classification involves more than two classes. For our project, we define bot

detection as a binary classification problem, where ‘human’=0 and ‘bot’=1. We

selected four algorithms for binary classification - Random Forest (RF), Decision Tree

(DT), K-Nearest Neighbors (KNN) and Support Vector Machine (SVM) - because

of their clear advantages as mentioned in Figure 3.5. These classification algorithms

completely align with our data structure and goals of the project.

3.1.4.1 Decision Tree Classifier

Decision trees can be used for both classification and regression problems. However,

they are most commonly employed to solve classification. A DT is composed of

internal nodes (also called decision nodes) and leaf nodes (also called terminal nodes).

Internal nodes represent data set features, branches represent decision rules, and each

leaf node represents an outcome. The internal nodes have multiple branches and are

used in decision making, and the leaf nodes are the outcomes of those decisions. A

decision tree asks a question, and based on the answer, the tree is further split into

subtrees. To predict a value for a data example, the DT algorithm starts from the

root node and compares the root node’s value to the example’s value; based on this

comparison, it follows a branch to a child node. The same process is repeated for

each node until the algorithm reaches a leaf node of the tree.

3.1.4.2 Random Forest Classifier

RF is one of the most powerful and robust classification algorithms which forms a

forest with a collection of decision trees. It is an ensemble learning method that is

usually trained with the ‘bagging’ method. It relies on the idea that a combination

24

of learning models boosts the overall result. While the DT searches for the most

important features in each node, the random forest adds randomness to the model

and searches for the best features among a subset of features. RF uses many hyper-

parameters, including the number of decision trees in the forest and the maximum

number of features considered by each tree when splitting nodes. These hyperparam-

eters are used to increase either the predictive power for the model or the training

speed.

3.1.4.3 Support Vector Machine Classifier

SVM classifiers plot data examples as points in n-dimensional spaces, where n is the

number of features. Classification is performed by finding a hyperplane (decision

boundary) that best divides the classes. It is very important to find the optimal

hyper-plane to best differentiate between classes. The hyperplane is a line and is

identified by calculating the distance to the nearest element of each class, and the

largest distance is taken. Finding a hyperplane is easy when the data is linearly

separable, and a straight line can be used. However, when the data is non-linear,

SVM uses the kernel trick. SVM uses three kernels: linear, radial basis function

(RBF), and polynomial. As the name suggests, the linear kernel is used when the

data is linear. RBF and polynomial are used when the data is non-linear. The

kernel trick saves time and complexity of transforming the non-linear data to make

it linearly separable.

3.1.4.4 K-Nearest Neighbors Classifier

KNN is one of the most versatile and widely used algorithms and has various appli-

cations such as finance, healthcare, handwriting detection, image, and video recog-

nition. In KNN, K is the nearest number of neighbors which is the core deciding

factor. KNN has the following three basic steps:

25

1. Calculate the distance between data points using a distance metric (e.g., Man-

hattan, Hamming, Euclidean, Minkowski)

2. Find the K closest neighbors

3. Vote on a class label among the closest neighbors

KNN performs very well when the number of features is lower. As the number

of features increases, it requires more data; this may lead to overfitting as a result.

However, this problem can be dealt with using a feature selection algorithm or using

a different distance metric such as cosine similarity.

When choosing a classification algorithm, there are some important factors

that we have to consider: 1) the size of the training data, 2) accuracy or inter-

pretability of the output, 3) the training time it requires, 4) linearity, and 5) number

of features. For data sets with a small amount of training data and a high num-

ber of features, algorithms with high bias and low variance, such Linear Regression,

Linear SVM, or Näıve Bayes are recommended. Regarding accuracy, it is good to

select flexible algorithms that give high accuracy at a low cost of interpretability.

One such algorithm is KNN because it produces a wider range of possible shapes

of the mapping functions. For example, KNN with K = 1 is highly flexible, as it

will consider input data to generate the mapping output function [51]. An algorithm

such as RF or DT can handle high dimensional and complex data structures when

the data is not linear.

3.2 System Implementation

3.2.1 GUI Application

The GUI program was developed using Python’s Tkinter framework [53], which is

built into the Python standard library and implements widgets such as text labels,

26

Figure 3.5: Advantages of the classifiers used

buttons, and text entry boxes, all of which are organized on top of a ‘frame’. Our

application contains five frames: a start page, the typing activity page, the ball

activity page, the sorting activity page, and an end page. The GUI switches between

frames after clicking a button (the ‘Start’ button for the start page, the ‘Done’ button

for the typing activity) or completing a task (clicking the ball 10 times in the ball

activity, correctly sorting all eight fruit and animal objects in the sorting activity).

The typing activity page contains the instructions, a text entry widget that

the user types in, and two buttons: a ‘Capture’ button to start capturing keystroke

activity data, and a ‘Done’ button to stop capturing keystroke data and switch to

the ball activity.

The ball activity page contains the instructions, a ‘Start’ button, and the

ball image object. After clicking the start button, the application starts capturing

mouse activity data and the ball appears in a location that is calculated by generated

random x and y screen coordinates. The ball is bound to an on-click event that hides

the ball, increments a variable storing the number of times the ball has been clicked

27

on, calculates a new random location, and reappears the ball in the new location.

After the ball click variable reaches 10, the GUI switches to the sorting activity.

The sorting activity contains the instructions as well as the four animals and

four fruits in randomly chosen locations at the top half of the GUI screen. At the

bottom half of the GUI screen are the two sorting boxes: one labelled ‘Animals’ for

animals and one labelled ‘Fruits’ for fruits. Each object to be sorted is bound to

a drag event which, upon releasing the object, checks that the object’s coordinates

are contained within the rectangular area formed by the correct sorting box. After

sorting all eight objects correctly, the application does the following: stops capturing

mouse activity, switches to the end page, and closes four seconds later.

3.2.2 Mouse/Keyboard Activity Logging

When the application starts, a unique folder is created under an events directory

folder to store the user’s biometrics data. Keystroke and mouse data are written to

separate CSV files and are saved in this unique folder. To record activity data, we cre-

ated a logger program in Python that is called from the application program. Mouse

and keystroke events are recorded using mouse and keyboard listener threads im-

ported from the pynput library [54]. These threads are instantiated when keystroke

and mouse capture starts, and terminated when keystroke and mouse capture stops,

respectively.

The mouse listener monitors the mouse for two events: the mouse is moved

(move or drag) and the mouse button is clicked (press or release). The keyboard

listener also monitors two events: a key is pressed and a key is released. Each event

triggers a callback function which calculates the time that the event occurred in

seconds relative to when capture started for that listener and writes a new row to

the corresponding CSV file. The source code in Figure 3.6 shows the implementation

of the callback functions.

28

Figure 3.6: Callback functions for the key and mouse listeners

The mouse CSV file contains five fields: the time in seconds; the x coordinate

of the mouse pointer; the y coordinate of the mouse pointer; the button that was

pressed or released (‘NoButton’ for mouse moves/drags; and the state of the button,

if it was pressed or released, or the state of the mouse, if it was moved or dragged.

The key CSV file contains three fields: the time in seconds; the key that was pressed

(‘None’ for key release events); and the key that was released (‘None’ for key press

events). Figures 3.7 and 3.8 show snippets of key and mouse CSV files outputted

after a user finishes with the application.

29

Figure 3.7: Example key CSV file Figure 3.8: Example mouse CSV file

3.2.3 Automated Bot Scripts

The design of the bot scripts was informed by prior research on how bots solve

CAPTCHAs. Bots use object recognition to detect and locate objects on screen

and build dictionaries of the correct answers for solving cognitive games. Hence,

our bot scripts can find: the text entry box to type in, the buttons (i.e., ‘Start’,

‘Capture’, and ‘Done’), the ball, the fruit and animal objects, and the sorting boxes.

The bots are also able to sort the fruits and animals into the correct boxes. To

control the mouse the keyboard, we use PyAutoGUI [55] to automate actions such

as moving or dragging the mouse, clicking, and typing keys. Object recognition is

implemented by PyAutoGUI’s locateOnScreen() function and the OpenCV library

[56]; locateOnScreen() returns takes an image file of the object as input and returns

the four integer tuple (left, top, width, height), which can be passed to a center()

method to find the (x, y) coordinates of the center of the object on screen. OpenCV

provides a confidence keyword which specifies the accuracy with which the function

should locate the image on screen.

The simple bot and the advanced bot mostly use the same PyAutoGUI func-

30

tions to carry out actions. Where they differ is the advanced bot’s incorporation of

random variables and function parameters. For example, the advanced bot program

uses random variables to alter the time delays between key press and key release

events and after completing each of 10 words. There is also a random delay intro-

duced between mouse button press and mouse button release events when clicking

on objects. For dragging objects in the sorting activity, the advanced bot takes ad-

vantage of the duration and tween parameters of PyAutoGUI’s dragTo function

which control how long the drag occurs and the mouse’s motion, respectively. The

duration is determined by a random variable. The tween for each drag is chosen

randomly. The set of tweens used are: “easeInOutBack” - the mouse overshoots the

start and destination of the drag; “easeInOutBounce” - the mouse ‘bounces’ at the

start and end of the drag; “easeInOutElastic” - the mouse ’wobbles’ towards the

midpoint of the drag.

The Bézier curves that define the trajectories for the advanced bot’s mouse

movements use the SciPy and NumPy libraries [57, 58]. See Figure 3.9 for the Bézier

curve source code.

3.2.4 Event Processing

After data collection is complete, user biometric data is stored under an events

directory across multiple folders - one folder per user - where each folder contains

a key.csv file and a mouse.csv file storing the user’s keystroke and mouse events,

respectively. The purpose of the feature extraction and features calculation phases

of our system is to parse the keystroke and mouse events for each user, generate

corresponding keystroke and mouse feature row files, and store them in user folders

under a features directory.

Feature extraction and calculation begins in a program that loops over all

folders in the events directory. For each folder, the program: creates a new folder

31

Figure 3.9: Implementation of Bézier curves

with the same folder name but under the features directory; calls a program that

extracts and calculates the keystroke features from key.csv; and calls a program

that extracts and calculates the mouse features from mouse.csv.

3.2.4.1 Keystroke features

The keystroke feature extraction and calculation program contains a function that

parses the key.csv file, processes the keystroke event rows in a for-loop, and cal-

culates the keystroke features. The function defines four lists for feature calcu-

lation: hold times stores the times that each key is held down for; cpr times

stores consecutive press release times; released times stores key release event

times; and pressed times stores key press event times. In addition, a variable

last pressed time stores the time of the most recently processed key press event.

32

The for-loop first checks that the row is not a typo; typos are defined as key

press or key release events for keys outside of the Shift key and the characters in

‘123CAPabc!’ (both shifted and unshifted, e.g. ‘C’ and ‘c’, ‘2’ and ‘@’). It then

determines whether the row corresponds to a key press or key release event based on

the values of the ‘Key Pressed’ and ‘Key Released’ fields and gets the event time. Key

press event times are added to pressed times and key release event times are added

to released times. For key release events, consecutive press times are calculated by

subtracting last pressed time from the event time and added to cpr times. For

hold times, a Python dictionary stores entries that map keys to their most recent

press time; entries are added or updated when processing key press events. When a

key is released, its press time is retrieved from the dictionary and subtracted from

the key release time to calculate the hold time. The total taken by the user to type

all 10 words is calculated by subtracting the first event row time from the last.

After all rows are processed, the feature extraction phase for keystroke data

is complete. The function then calculates the press and release latencies from

pressed times and released times and the average, standard deviation, maxi-

mum, and minimum values of the press latencies, release latencies, cpr times, and

hold times. The keystroke feature row is formed from all the calculated values. See

Figure 3.10 for a screenshot of the feature calculation code after processing key event

rows.

After calculating the feature row, the key feature extraction/calculation pro-

gram creates key.csv in the user’s folder under the features directory and writes

the keystroke feature header as well as the keystroke feature row.

3.2.4.2 Mouse features

The mouse feature extraction and calculation program first processes the mouse.csv

file and forms MM, PC, and DD actions from groups of events. Actions are rep-

33

Figure 3.10: Keystroke features calculation

resented by a MouseAction class and each MouseAction object is instantiated with

the action type and the list of mouse events. Figure 3.11 shows the source code that

parses events into actions. After all events have been processed, the resulting list of

actions is filtered to remove actions with fewer than two events.

MouseAction objects have a method calculate features(). Each action

calls this method to calculate its action features from its events and save these fea-

tures as instance variables. The features are calculated according to their definitions

in Table 3.2.

A Session class represents all of a user’s mouse actions from a single appli-

cation run. After features have been calculated for all of a user’s actions, a Session

object is formed from the set of actions. From these actions, the object calculates

two session features: the total number of actions and the total duration of the mouse

activity, which is computed by subtracting the first event time in the first action from

the last event time in the last action.

The Session object calls its method calculate features() which computes

the features over its set of actions which, combined with the two session features, form

the user’s mouse feature row. The set of actions are partitioned by action type. For

each action type, the average, standard deviation, maximum, and minimum values of

each action feature is calculated. For PC actions, the average, standard, maxmimum,

34

Figure 3.11: Parsing mouse events into actions

and minimum click times are calculated as well. The two session features and the

calculated action features for each action type are combined together to form the

user’s mouse feature row.

After calculating the mouse feature row, the mouse feature extraction/calcu-

lation program creates mouse.csv in the user’s folder under the features directory

and writes the mouse feature header as well as the mouse feature row. (This row is

combined with the key feature row before classification; please see Section 3.3.1.)

35

3.2.5 Classifiers

The RF, DT, SVM, and KNN classifiers were implemented with scikit-learn

version 0.24.2 [57], which provides dozens of machine learning algorithms and models

for Python. The pandas library [59] was used for creating and manipulating the data

sets. The RF classifier was implemented with a forest of 150 decision trees. The SVM

classifier was implemented with a linear kernel. The KNN classifier used K = 3.

3.3 Testing

In this section, we describe our testing procedure and display and discuss the analysis

of our results.

3.3.1 Data Sets

To build and evaluate our bot detection system, we collected data from human par-

ticipants and the two bots. Our testing involved 20 participants who were instructed

to complete the three activities in our GUI and send the keystroke and mouse event

CSV files generated from their session. Some participants opted to complete multi-

ple sessions. To gather bot data, we ran the bot scripts in parallel with the GUI.

In total, we collected data from 68 human sessions, 30 simple bot sessions, and 30

advanced bot sessions.

After executing feature extraction and calculation, the keystroke and mouse

feature rows are stored in key.csv and mouse.csv, respectively, in unique session

folders under the features directory as detailed in Sections 3.2.4.1 and 3.2.4.2. To

form data sets, each user’s keystroke and mouse feature rows are merged together.

The merged feature rows are then concatenated together. Because our classification

is supervised, a class label for each feature row is required. Therefore, we added

a new ‘class’ field to the feature rows where ‘class’ is 1 if the user is a bot and 0

36

otherwise. Finally, the feature rows are concatenated together to form a data set,

where each row represents a user and each column represents a feature (except for the

last column, which is the class label). Using python’s NumPy library [58], random

statistical noise drawn from a Gaussian distribution was added to a randomly selected

10% of the data set rows.

To compare the results of our system against the simple bot versus the ad-

vanced bot, we formed two data sets from the collected data. The first data set,

Simple, contains the data from the 68 human sessions and 30 simple bot examples.

The second data set, Advanced, contains the data from the 68 human sessions and

30 advanced bot examples. In total, each data set has 98 examples, where each

example has 131 features and a class label.

3.3.2 Evaluation Metrics

We used 5-fold cross validation to train and test our classifiers against the Simple

and Advanced data sets. We evaluate the performance of each classifier in terms

of the following metrics:

Accuracy =
TP + TN

TP + FP + TN + FN
× 100% (3.3)

Precision =
TP

TP + FP
× 100% (3.4)

Recall =
TP

TP + FN
× 100% (3.5)

F1 score =
TP

TP + 1
2
(FP + FN)

× 100% (3.6)

AUC = Area under the ROC curve (3.7)

where TP = true positives, FP = false positives, TN = true negatives, and

FN = false negatives. For each performance metric, we calculated the average ±

standard deviation across all five folds. In addition, we plot the ROC curve for each

37

fold and report the mean AUC across all folds.

3.3.3 Results and Analysis

Tables 3.3 and 3.4 show the classification results in terms of accuracy, precision,

recall, and F1 score against the Simple and Advanced data sets, respectively. The

best results for each metric in each data set are in bold.

Table 3.3: Performance metrics across four models for Simple data set

Model Accuracy Precision Recall F1 Score

Random Forest 96.89%± 4.68% 97.14%±6.39% 93.33%±14.91% 94.46%± 8.74%

Decision Tree 95.84%± 6.85% 94.29%±12.78% 93.33%± 9.13% 93.57%±10.10%

SVM 96.89%± 2.84% 94.29%± 7.82% 96.67%±7.45% 95.10 ± 4.50%

K-Nearest Neighbors 96.95%±4.50% 96.67%± 7.45% 93.33%± 9.13% 94.85%7.55%

Table 3.4: Performance metrics across four models for Advanced data set

Model Accuracy Precision Recall F1 Score

Random Forest 96.95%±4.50% 96.67%±7.45% 93.33%±9.13% 94.85%±7.55%

Decision Tree 92.00%±15.25% 88.57%±25.56% 86.67%±21.73% 87.41%±23.40%

SVM 94.89%± 3.54% 90.95%± 8.32% 93.33%±9.13% 91.77± 5.92%

K-Nearest Neighbors 94.84%± 3.72% 94.29%± 7.82% 90.00%±14.91% 91.10%± 7.17%

Figures 3.12 and 3.13 show the ROC curves and mean AUC for the classifiers

against the Simple and Advanced data sets, respectively.

As observed in Table 3.3, KNN achieved the highest accuracy against the

Simple data set, while RF achieved the highest accuracy against the Advanced

data set. The RF classifier showed the best overall performance among all four classi-

fiers, giving the highest precision (97.14%) and mean AUC (0.99) against the Simple

data set as well as the highest scores across all metrics against the Advanced data

set. The SVM and KNN classifiers also performed well; each classifier achieved the

highest results for at least one metric against either the Simple or Advanced data

set.

The DT classifier performed the worst amongst all four classifiers. It yielded

the lowest (or tied for lowest) scores for every metric against both data sets. In

38

(a) Random Forest (b) Decision Tree

(c) SVM (d) K-Nearest Neighbors

Figure 3.12: ROC Curves for Simple data set

addition, the standard deviation of the results for DT are quite high, particularly

against the Advanced data set. A possible explanation for this observation is that

decision trees are prone to overfitting, which occurs when a model tightly fits the

training data so that it performs well on the training examples but poorly against

test examples and can cause high variance.

With few exceptions, the results of our bot detection system against the Sim-

ple data set were higher than the results against the Advanced data set. This

indicates that the techniques used in the advanced bot made it slightly more effec-

tive at evading detection.

None of the classifiers achieved a 100% precision score against either of the

data sets. This implies that some human users are classified as bots, which is a

39

(a) Random Forest (b) Decision Tree

(c) SVM (d) K-Nearest Neighbors

Figure 3.13: ROC Curves for Advanced data set

concern for login systems.

Lastly, while the classification results for our bot detection system are high

(> 85% across all metrics), none of the models achieved perfect scores. Our system

should not be viewed as the sole security solution against credential stuffing bots, but

as part of layered defense on top of additional services (e.g., browser fingerprinting,

firewalls).

40

Chapter 4

Conclusion and Future Work

Credential stuffing attacks are on the rise. The massive number of IMAP-based

credential stuffing attacks on Microsoft 365 and G Suite accounts have been in the

headlines. As botnets carry out the majority of credential stuffing attacks, it has

become necessary to implement a bot detection system as a layer of security. The

drawbacks of many bot detection techniques such as deploying honeynets, blacklist-

ing IPs, signature-based bot detection, and n-gram models have led many researchers

to use behavioural biometrics. In this paper, we aimed to show that two types of

behavioural biometrics - mouse dynamics and keystroke dynamics - can effectively

distinguish between humans and bots. We introduced a supervised learning bot

detection system using mouse and keystroke dynamics and compared the RF, DT,

SVM and KNN algorithms for classification. Our entire project is built in Python

and consists of four phases: the data collection phase, feature extraction phase, fea-

ture calculation phase, and classification phase. For testing, we collected data from

68 user sessions, 30 simple bot sessions, and 30 advanced bot sessions, and formed

two data sets: Simple and Advanced. In total, each data set had 98 examples and

each example had 131 features.

Our system showed the best overall performance with the RF classifier, giving

41

96.89% accuracy for the Simple data set and 95.95% for the Advanced data set.

RF scored the highest precision and mean AUC against the Simple data set and

the highest scores for every metric against the Advanced data set. The worst

performing classifier was DT, which yielded the lowest scores for every metric against

both data sets.

For future work, we plan to add logistic regression as the meta layer to develop

an ensemble learning model that would be more reliable. The work can be also

improved by collecting and training the model with more samples for future work.

In addition, the model can also be tested with free-text keystrokes to analyze the

case in other scenarios. Deep learning or artificial intelligence can also be used to

create more realistic bots.

42

Bibliography

[1] “What is a password manager? here’s why you should be using

one,” Jul 2021. [Online]. Available: https://www.androidauthority.com/

password-manager-1238302/

[2] S. Rees-Pullman, “Is credential stuffing the new phishing?” Computer Fraud &

Security, vol. 2020, pp. 16–19, 07 2020.

[3] M. Golla, L. Filipe, M. Wei, M. Dürmuth, B. Ur, J. Hainline, and E. Redmiles,

““what was that site doing with my facebook password?” designing password-

reuse notifications,” Proceedings of the ACM Conference on Computer and Com-

munications Security, pp. 1549–1566, 2018.

[4] “Telesign consumer account security report.” [Online]. Available: https:

//www.telesign.com/resource/telesign-consumer-account-security-report

[5] 2021. [Online]. Available: https://www.akamai.com/us/en/resources/

our-thinking/state-of-the-internet-report/

[6] K. C. Wang and M. K. Reiter, “Detecting stuffing of a user’s credentials at

her own accounts,” Proceedings of the 29th USENIX Security Symposium, pp.

2201–2218, 2020.

43

[7] S. Gatlan, “Multi-factor auth bypassed in office 365 and g suite imap attacks,”

Mar 2019. [Online]. Available: https://www.bleepingcomputer.com/news/

security/multi-factor-auth-bypassed-in-office-365-and-g-suite-imap-attacks/

[8] “Brute force attack analysis of new cloud attacks: Proofpoint us,” 2019.

[Online]. Available: https://www.proofpoint.com/us/threat-insight/post/

threat-actors-leverage-credential-dumps-phishing-and-legacy-email-protocols

[9] P. Kirkbride, M. A. Akber Dewan, and F. Lin, “Game-Like Captchas for Intru-

sion Detection,” Proceedings - IEEE 18th International Conference on Depend-

able, Autonomic and Secure Computing, IEEE 18th International Conference on

Pervasive Intelligence and Computing, IEEE 6th International Conference on

Cloud and Big Data Computing and IEEE 5th Cybe, no. August, pp. 312–315,

2020.

[10] S. Mansfield-Devine, “Locking the door: tackling credential abuse,” Network

Security, vol. 2021, pp. 11–19, 03 2021.

[11] X. Li, B. A. Azad, A. Rahmati, and N. Nikiforakis, “Good bot , bad bot :

Characterizing automated browsing activity,” IEEE Symposium on Security and

Privacy (S&P), 2021.

[12] B. Lu, X. Zhang, Z. Ling, Y. Zhang, and Z. Lin, “A measurement study of au-

thentication rate-limiting mechanisms of modern websites,” ACM International

Conference Proceeding Series, pp. 89–100, 2018.

[13] M. Hartwig, “Mfa is not enough - malicious oauth apps in office

365 are here to stay: Vectra ai,” Jun 2020. [Online]. Available:

https://www.vectra.ai/blogpost/mfa-is-not-enough

[14] M. Antal and E. Egyed-Zsigmond, “Intrusion detection using mouse dynamics,”

IET Biometrics, vol. 8, no. 5, pp. 285–294, 2019.

44

[15] M. Antal, Norbert Fejer, and K. Buza, “SapiMouse : Mouse Dynamics-based

User Authentication Using Deep Feature Learning,” IEEE 15th International

Symposium on Applied Computational Intelligence and Informatics, pp. 61–66,

2021.

[16] H. Gamboa and A. Fred, “A behavioral biometric system based on human-

computer interaction,” Proc SPIE, vol. 5404, pp. 381–392, 08 2004.

[17] A. A. E. Ahmed and I. Traore, “A new biometric technology based on mouse

dynamics,” IEEE Transactions on Dependable and Secure Computing, vol. 4,

no. 3, pp. 165–179, 2007.

[18] C. Shen, Z. Cai, and X. Guan, “Continuous authentication for mouse dynam-

ics: A pattern-growth approach,” in IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN 2012), 2012, pp. 1–12.

[19] C. Shen, Z. Cai, X. Guan, Y. Du, and R. A. Maxion, “User authentication

through mouse dynamics,” IEEE Transactions on Information Forensics and

Security, vol. 8, no. 1, pp. 16–30, 2013.

[20] B. Sayed, I. Traore, I. Woungang, and M. S. Obaidat, “Biometric authentication

using mouse gesture dynamics,” IEEE Systems Journal, vol. 7, no. 2, pp. 262–

274, 2013.

[21] M. Mohamed and N. Saxena, “Gametrics: Towards attack-resilient behavioral

authentication with simple cognitive games,” ACM International Conference

Proceeding Series, vol. 5-9-Decemb, pp. 277–288, 2016.

[22] L. H. Kim, R. Goel, J. Liang, M. Pilanci, and P. E. Paredes, “Linear predictive

coding as a valid approximation of a mass spring damper model for acute stress

prediction from computer mouse movement,” 2020.

45

[23] L. Pepa, A. Sabatelli, L. Ciabattoni, A. Monteriù, F. Lamberti, and L. Morra,

“Stress detection in computer users from keyboard and mouse dynamics,” IEEE

Transactions on Consumer Electronics, vol. 67, no. 1, pp. 12–19, 2021.

[24] I. Arapakis and L. Leiva, “Learning efficient representations of mouse move-

ments to predict user attention,” in SIGIR 2020 - Proceedings of the 43rd Inter-

national ACM SIGIR Conference on Research and Development in Information

Retrieval. ACM, 07 2020, pp. 1309–1318.

[25] A. Acien, A. Morales, J. Fierrez, R. Vera-Rodriguez, and O. Delgado-Mohatar,

“BeCAPTCHA: Behavioral bot detection using touchscreen and mobile sensors

benchmarked on HuMIdb,” Engineering Applications of Artificial Intelligence,

vol. 98, 2021.

[26] M. Antal and L. Denes-Fazakas, “User verification based on mouse dynamics: a

comparison of public data sets,” in 2019 IEEE 13th International Symposium on

Applied Computational Intelligence and Informatics (SACI), 2019, pp. 143–148.

[27] P. Chong, Y. Elovici, and A. Binder, “User Authentication Based on Mouse Dy-

namics Using Deep Neural Networks: A Comprehensive Study,” IEEE Trans-

actions on Information Forensics and Security, vol. 15, pp. 1086–1101, 2020.

[28] A. Harilal, F. Toffalini, J. Castellanos, J. Guarnizo, I. Homoliak, and M. Ochoa,

“Twos: A dataset of malicious insider threat behavior based on a gamified

competition,” in Proceedings of the 2017 International Workshop on Managing

Insider Security Threats, 2017, pp. 45–56.

[29] I. Tsimperidis, P. D. Yoo, K. Taha, A. Mylonas, and V. Katos, “R 2 bn: An

adaptive model for keystroke-dynamics-based educational level classification,”

IEEE transactions on cybernetics, vol. 50, no. 2, pp. 525–535, 2018.

46

[30] A. Morales, A. Acien, J. Fierrez, J. V. Monaco, R. Tolosana, R. Vera, and

J. Ortega-Garcia, “Keystroke biometrics in response to fake news propagation

in a global pandemic,” in 2020 IEEE 44th Annual Computers, Software, and

Applications Conference (COMPSAC). IEEE, 2020, pp. 1604–1609.

[31] F. Bergadano, D. Gunetti, and C. Picardi, “User authentication through

keystroke dynamics,” ACM Transactions on Information and System Security

(TISSEC), vol. 5, no. 4, pp. 367–397, 2002.

[32] S. Krishnamoorthy, L. Rueda, S. Saad, and H. Elmiligi, “Identification of user

behavioral biometrics for authentication using keystroke dynamics and machine

learning,” in Proceedings of the 2018 2nd International Conference on Biometric

Engineering and Applications, 2018, pp. 50–57.

[33] V. Mishra, R. Gupta, G. Sood, and J. Patni, “User authentication using

keystroke dynamics,” Recent Trends Sci Technol Manag Soc Dev, vol. 73, 2018.

[34] X. Lu, S. Zhang, P. Hui, and P. Lio, “Continuous authentication by free-text

keystroke based on cnn and rnn,” Computers & Security, vol. 96, p. 101861,

2020.

[35] K. Ahuja and V. Todwal, “Software bot detection by keystroke dynamics,”

Journal of Critical Reviews, vol. 7, no. 19, pp. 9975–9982, 2020.

[36] L. A. Alreshoodi and S. A. Alsuhibany, “A proposed methodology for detecting

human attacks on text-based captchas.”

[37] Z. Chu, S. Gianvecchio, A. Koehl, H. Wang, and S. Jajodia, “Blog

or block: Detecting blog bots through behavioral biometrics,” Computer

Networks, vol. 57, no. 3, pp. 634–646, 2013. [Online]. Available: http:

//dx.doi.org/10.1016/j.comnet.2012.10.005

47

[38] J. Solano, L. Tengana, A. Castelblanco, E. Rivera, C. Lopez, and M. Ochoa, “A

few-shot practical behavioral biometrics model for login authentication in web

applications,” in NDSS Workshop on Measurements, Attacks, and Defenses for

the Web (MADWeb’20), 2020.

[39] X. Xu, L. Liu, and B. Li, “A survey of captcha technologies to distinguish

between human and computer,” Neurocomputing, vol. 408, 05 2020.

[40] M. Guerar, L. Verderame, M. Migliardi, F. Palmieri, and A. Merlo, “Gotta

CAPTCHA ’Em All: A Survey of Twenty years of the Human-or-Computer

Dilemma,” ACM Computing Surveys, vol. 0, no. 0, 2021. [Online]. Available:

http://arxiv.org/abs/2103.01748

[41] M. Mohamed, N. Sachdeva, M. Georgescu, S. Gao, N. Saxena, C. Zhang, P. Ku-

maraguru, P. C. Van Oorschot, and W. B. Chen, “A three-way investigation of a

game-CAPTCHA: Automated attacks, relay attacks and usability,” ASIA CCS

2014 - Proceedings of the 9th ACM Symposium on Information, Computer and

Communications Security, no. June, pp. 195–206, 2014.

[42] J. Solano, L. Camacho, A. Correa, C. Deiro, J. Vargas, and M. Ochoa,

“Combining behavioral biometrics and session context analytics to enhance

risk-based static authentication in web applications,” International Journal of

Information Security, vol. 20, no. 2, pp. 181–197, 2021. [Online]. Available:

https://doi.org/10.1007/s10207-020-00510-x

[43] B. Amin Azad, O. Starov, P. Laperdrix, and N. Nikiforakis, Web Runner 2049:

Evaluating Third-Party Anti-bot Services. Springer International Publishing,

2020, vol. 12223 LNCS.

[44] M. Nathan, “Credential stuffing: new tools and stolen data drive continued

attacks,” Computer Fraud & Security, vol. 2020, no. 12, pp. 18–19,

48

2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S1361372320301305

[45] Y. Xing, H. Shu, H. Zhao, D. Li, and L. Guo, “Survey on botnet detection

techniques: Classification, methods, and evaluation,” Mathematical Problems

in Engineering, vol. 2021, 2021.

[46] A. Lagopoulos, G. Tsoumakas, and G. Papadopoulos, “Web Robot

Detection in Academic Publishing,” 2017. [Online]. Available: http:

//arxiv.org/abs/1711.05098

[47] P. Shi, Z. Zhang, and K. K. R. Choo, “Detecting Malicious Social Bots Based

on Clickstream Sequences,” IEEE Access, vol. 7, pp. 28 855–28 862, 2019.

[48] M. Tsikerdekis, S. Barret, R. Hansen, M. Klein, J. Orritt, and J. Whitmore,

“Efficient deep learning bot detection in games using time windows and long

short-term memory (LSTM),” IEEE Access, vol. 8, pp. 195 763–195 771, 2020.

[49] R. B̊åath, “Bot or not: Can you spot the automated mouse

movements?” Dec 2020. [Online]. Available: https://blog.castle.io/

bot-or-not-can-you-spot-the-automated-mouse-movements/

[50] Z. Sun, R. He, J. Feng, S. Shan, and Z. Guo, Biometric Recognition 14th Chinese

Conference, CCBR 2019, Zhuzhou, China, October 12–13, 2019, Proceedings:

14th Chinese Conference, CCBR 2019, Zhuzhou, China, October 12–13, 2019,

Proceedings, 01 2019.

[51] “An easy guide to choose the right machine learning algorithm,” https://www.

kdnuggets.com/2020/05/guide-choose-right-machine-learning-algorithm.html,

august 2021.

49

[52] J. Rana, “Comparison of classification algorithms (lr,

dt, rf, svm, knn),” https://www.kdnuggets.com/2020/05/

guide-choose-right-machine-learning-algorithm.html, february 2020.

[53] F. Lundh, “An introduction to tkinter,” URL: www. pythonware. com/li-

brary/tkinter/introduction/index. htm, 1999.

[54] “pynput package documentation.” [Online]. Available: https://pynput.

readthedocs.io/en/latest/

[55] Asweigart, “asweigart/pyautogui: A cross-platform gui automation python

module for human beings. used to programmatically control the mouse &

keyboard.” [Online]. Available: https://github.com/asweigart/pyautogui

[56] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools,

2000.

[57] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Ma-

chine learning in Python,” Journal of Machine Learning Research, vol. 12, pp.

2825–2830, 2011.

[58] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,

D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Pi-

cus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. Fernández del

Ŕıo, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy,

W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array program-

ming with NumPy,” Nature, vol. 585, p. 357–362, 2020.

50

[59] Wes McKinney, “Data Structures for Statistical Computing in Python,” in Pro-

ceedings of the 9th Python in Science Conference, Stéfan van der Walt and

Jarrod Millman, Eds., 2010, pp. 56 – 61.

51

